pandoc -t markdown_strict –citeproc publications-list.md -o publications-list.md –bibliography INSPIRE-CiteAll.bib

<Allys, E. et al. 2023. “Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey.” PTEP 2023 (4): 042F01. https://doi.org/10.1093/ptep/ptac150.

Blancard, Bruno Régaldo-Saint, Erwan Allys, Constant Auclair, François Boulanger, Michael Eickenberg, François Levrier, Léo Vacher, and Sixin Zhang. 2023. “Generative Models of Multichannel Data from a Single ExampleApplication to Dust Emission.” Astrophys. J. 943 (1): 9. https://doi.org/10.3847/1538-4357/aca538.

Campeti, P. et al. 2024. “LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization.” JCAP 06: 008. https://doi.org/10.1088/1475-7516/2024/06/008.

Carralot, F. et al. 2024. “Requirements on the gain calibration for LiteBIRD polarisation data with blind component separation,” November. https://arxiv.org/abs/2411.02080.

Dias, J. D. F., Nils Schöneberg, Léo Vacher, C. J. A. P. Martins, and Samy Vinzl. 2024. “A speed limit on tachyon fields from cosmological and fine-structure data.” JCAP 11: 030. https://doi.org/10.1088/1475-7516/2024/11/030.

Fuskeland, U. et al. 2023. “Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations.” Astron. Astrophys. 676: A42. https://doi.org/10.1051/0004-6361/202346155.

Ghigna, T. et al. 2024. “The LiteBIRD mission to explore cosmic inflation.” In SPIE Astronomical Telescopes + Instrumentation 2024. https://arxiv.org/abs/2406.02724.

Hubmayr, J. et al. 2022. “Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD.” J. Low Temp. Phys. 209 (3-4): 396–408. https://doi.org/10.1007/s10909-022-02808-7.

Krachmalnicoff, Nicoletta et al. 2022. “In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications.” JCAP 01 (01): 039. https://doi.org/10.1088/1475-7516/2022/01/039.

Leloup, C. et al. 2024. “Impact of beam far side-lobe knowledge in the presence of foregrounds for LiteBIRD.” JCAP 06: 011. https://doi.org/10.1088/1475-7516/2024/06/011.

Lonappan, A. I. et al. 2024. “LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB.” JCAP 06: 009. https://doi.org/10.1088/1475-7516/2024/06/009.

Martins, C. J. A. P., and L. Vacher. 2019. “Astrophysical and local constraints on string theory: Runaway dilaton models.” Phys. Rev. D 100 (12): 123514. https://doi.org/10.1103/PhysRevD.100.123514.

Mellier, Y. et al. 2024. “Euclid. I. Overview of the Euclid mission,” May. https://arxiv.org/abs/2405.13491.

Mennella, A. et al. 2024. “Measuring the CMB primordial B-modes with Bolometric Interferometry - Status and future prospects of the QUBIC experiment.” EPJ Web Conf. 293: 00030. https://doi.org/10.1051/epjconf/202429300030.

Mousset, L. et al. 2022. “Status of QUBIC, the Q&U Bolometer for Cosmology.” In 33rd Rencontres de Blois: Exploring the Dark Universe. https://arxiv.org/abs/2210.03161.

Namikawa, T. et al. 2024. “LiteBIRD science goals and forecasts: improving sensitivity to inflationary gravitational waves with multitracer delensing.” JCAP 06: 010. https://doi.org/10.1088/1475-7516/2024/06/010.

O’Sullivan, C. et al. 2023. “QUBIC The Q & U Bolometric Interferometer for Cosmology.” In 17th European Conference on Antennas and Propagation. https://doi.org/10.23919/EuCAP57121.2023.10133731.

Paoletti, D. et al. 2024. “LiteBIRD science goals and forecasts: primordial magnetic fields.” JCAP 07: 086. https://doi.org/10.1088/1475-7516/2024/07/086.

Remazeilles, M. et al. 2024. “LiteBIRD Science Goals and Forecasts. Mapping the Hot Gas in the Universe,” July. https://arxiv.org/abs/2407.17555.

Ritacco, Alessia, François Boulanger, Vincent Guillet, Jean-Marc Delouis, Jean-Loup Puget, Jonathan Aumont, and Léo Vacher. 2023. “Dust polarization spectral dependence from Planck HFI data - Turning point for cosmic microwave background polarization-foreground modeling.” Astron. Astrophys. 670: A163. https://doi.org/10.1051/0004-6361/202244269.

Schöneberg, Nils, and Léo Vacher. 2024. “The mass effect – Variations of masses and their impact on cosmology,” July. https://arxiv.org/abs/2407.16845.

Schöneberg, Nils, Léo Vacher, J. D. F. Dias, Martim M. C. D. Carvalho, and C. J. A. P. Martins. 2023. “News from the Swampland constraining string theory with astrophysics and cosmology.” JCAP 10: 039. https://doi.org/10.1088/1475-7516/2023/10/039.

Takase, Y. et al. 2024. “Multi-dimensional optimisation of the scanning strategy for the LiteBIRD space mission,” August. https://arxiv.org/abs/2408.03040.

Vacher, L., J. Aumont, L. Montier, S. Azzoni, F. Boulanger, and M. Remazeilles. 2022a. “Moment expansion of polarized dust SED: A new path towards capturing the CMB B-modes with LiteBIRD.” Astron. Astrophys. 660: A111. https://doi.org/10.1051/0004-6361/202142664.

———. 2022b. “Contribution to the 2022 Cosmology session of the 56th Rencontres de Moriond: Moment expansion of polarized dust SED: A new path towards capturing the CMB B-modes with LiteBIRD.” In 56th Rencontres de Moriond on Cosmology. https://arxiv.org/abs/2203.07246.

Vacher, Léo. 2023. “Understanding the galactic polarized signal in the quest for new fundamental physics in the cosmic microwave background.” PhD thesis.

Vacher, Léo, Jonathan Aumont, François Boulanger, Ludovic Montier, Vincent Guillet, Alessia Ritacco, and Jens Chluba. 2023. “Frequency dependence of the thermal dust E/B ratio and EB correlation: Insights from the spin-moment expansion.” Astron. Astrophys. 672: A146. https://doi.org/10.1051/0004-6361/202245292.

Vacher, Léo, Alessandro Carones, Jonathan Aumont, Jens Chluba, Nicoletta Krachmalnicoff, Claudio Ranucci, Mathieu Remazeilles, and Arianna Rizzieri. 2024. “How bad could it be? Modelling the 3D complexity of the polarised dust signal using moment expansion,” November. https://arxiv.org/abs/2411.11649.

Vacher, Léo, Jens Chluba, Jonathan Aumont, Aditya Rotti, and Ludovic Montier. 2023. “High precision modeling of polarized signals: Moment expansion method generalized to spin-2 fields.” Astron. Astrophys. 669: A5. https://doi.org/10.1051/0004-6361/202243913.

Vacher, Léo, João F. Dias, Nils Schöneberg, C. J. A. P. Martins, Samy Vinzl, Savvas Nesseris, Guadalupe Cañas-Herrera, and Matteo Martinelli.

  1. Constraints on extended Bekenstein models from cosmological, astrophysical, and local data.” Phys. Rev. D 106 (8): 083522. https://doi.org/10.1103/PhysRevD.106.083522.

Vacher, Léo, and Nils Schöneberg. 2024. “Incompatibility of fine-structure constant variations at recombination with local observations.” Phys. Rev. D 109 (10): 103520. https://doi.org/10.1103/PhysRevD.109.103520.

Vacher, Léo, Nils Schöneberg, J. D. F. Dias, C. J. A. P. Martins, and Francisco Pimenta. 2023. “Runaway dilaton models: Improved constraints from the full cosmological evolution.” Phys. Rev. D 107 (10): 104002. https://doi.org/10.1103/PhysRevD.107.104002.

Vielva, P. et al. 2022. “Polarization angle requirements for CMB B-mode experiments. Application to the LiteBIRD satellite.” JCAP 04 (04): 029. https://doi.org/10.1088/1475-7516/2022/04/029.