Moment expansion: a new path towards capturing the CMB B-modes with LiteBIRD

L. Vacher

J.Aumont, L. Montier

February 2021

Unavoidable SED averages :

∕€

Context and introduction

- LiteBIRD is designed to reach the scalar to tensor ratio *r*, smoking gun for cosmic inflation, with strong limit $\sigma(r) \approx 10^{-4}$
- We propose to apply a method to characterize the complexity of the high frequency polarized SED (spectral distortions) of thermal galactic dust emission. • This method is an extent of the Moment expansion (Chluba et al 2017) in harmonic
- Polarized foregrounds must be characterized with very high accuracy, otherwise they induce a biais on *r*

Along the Line of sight (depth)

 Between lines of sights (in instrumental beams) Over whole sky regions (spherical harmonics)

S = 3.1%. = -59°

Dust, synchrotron etc ... SED are non linear **SED** spectral distortions

 $\Big\{$

SED distortions

= 2.7%. = 29°

space (done in Mangilli et al 2019)

• Application to simulated LiteBIRD observation in order to reach an unbiased value for *^r*

Moment expansion of the SED to catch spectral distortions

New idea : Taylor like expansion of the SED in *β* **around the modified black body Standard way to characterize thermal dust emission : modified black-body (MBB)**

Spectral index	Black body	Moment of order
$I_D(\nu, \vec{n}) = \left(\frac{\nu}{\nu_0}\right)^{\beta} \frac{B_{\nu}(T)}{B_{\nu_0}(T)} A(\vec{n}) = \frac{I_{\nu}(\beta, T)}{I_{\nu_0}(\beta, T)} A(\vec{n})$ \n	$I_D(\nu, \vec{n}) = \frac{I_{\nu}(\beta_0, T_0)}{I_{\nu_0}(\beta_0, T_0)} \left[A(\vec{n}) + \sum_{i=1}^{\infty} \frac{1}{i!} \omega_i(\vec{n}) \ln^i \left(\frac{\nu}{\nu_0}\right)\right]$ \n	

Generalization of the above formula in harmonic space and cross-power spectra :

$$
\mathcal{D}_{\ell,\text{moments}}^{\nu_1 \times \nu_2} = \frac{I_{\nu} \left(\beta_0 \left(\ell \right), T_0 \right) I_{\nu} \left(\beta_0 \left(\ell \right), T_0 \right)}{I_{\nu_0}^2 \left(\beta_0 \left(\ell \right), T_0 \right)} \left\{ \mathcal{D}_{\ell}^{A_d \times A_d} \right\}
$$

\n
$$
+ \sum_{k=1}^{\infty} \frac{1}{k!} \mathcal{D}_{\ell}^{A_d \times \omega_k} \left[\ln^k \left(\frac{\nu_1}{\nu_0} \right) + \ln^k \left(\frac{\nu_2}{\nu_0} \right) \right]
$$

\n
$$
+ \sum_{i,j=1}^{\infty} \frac{1}{i!j!} \mathcal{D}_{\ell}^{\omega_i \times \omega_j} \left[\ln^i \left(\frac{\nu_1}{\nu_0} \right) \ln^j \left(\frac{\nu_2}{\nu_0} \right) \right] \right\}
$$

\n
$$
\leq \text{Going to order N} \geq \text{5-ssopping the sums at k,i,j = N}
$$

Results : SED parameters and moments

Results : tensor to scalar ratio

d0 : MBB is a good fit, no biais on r at any time. Moment expansion leads to no biais but increasing standard deviation

d1 : MBB flawed inducing large biais on *r.* The biais is significantly reduced thanks to moment expansion up to order 2.

Wha to do next ?

- Trying new implementations to find the best tradeoff biais/std on *r* (incoming paper)
- Test the robustness of this results with an input *r* greater than zero (incoming paper) find a way to include other polarized foregrounds like synchrotron and look at
- find a way to include other polarized foregrounds like synchrotron and look at all the frequency bands. Couple moment expansion with other methods
- Moments already used successfully for other instruments like Simon's observatory (See S. Azzoni's poster and paper **(Azzoni et al 2020)**. Could be applied in the same spirit to LiteBIRD systematic effects

Conclusion and take-away

- Applying moment expansion in harmonic space significantly reduced the biais on r due to spatial variation of dust's SED parameters
- This methods (coupled with others) could help reaching LiteBIRD's foregrounds high precision objectives foregrounds high precision objectives